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2 Faculty of Natural and Mathematical Sciences, Teslina 12, 21000 Split, Croatia

Received: 26 February 2007 /
Published online: 18 April 2007 − © Springer-Verlag / Società Italiana di Fisica 2007

Abstract. We study a Lie algebra type κ-deformed space with an undeformed rotation algebra and com-
mutative vector-like Dirac derivatives in a covariant way. The space deformation depends on an arbitrary
vector. Infinitely many covariant realizations in terms of commuting coordinates of undeformed space and
their derivatives are constructed. The corresponding coproducts and star products are found and related in
a new way. All covariant realizations are physically equivalent. Specially, a few simple realizations are found
and discussed. The scalar fields, invariants and the notion of invariant integration is discussed in the natural
realization.

1 Introduction

In the previous decade there has been growing interest in
the formulation of physical theories defined on noncommu-
tative (NC) spaces. The consistency of such theories and
their implications were studied in [1–9]. It is important
to classify the NC spaces and investigate their properties,
and, particularly, to develop a unifying approach to a gen-
eralized theory for such spaces that is convenient for physi-
cal applications. The notion of generalized symmetries and
their role in the analysis of NC spaces is also crucial. In
order to make a contribution in this direction, we analyze
a NC space of the Lie algebra type, in particular the so-
called κ-deformed space introduced in [10–12].
For simplicity, we restrict our attention to κ-deformed

Euclidean space, although the analysis can easily be ex-
tended to κ-deformed Minkowski space. The noncommu-
tativity of the coordinates depends on a deformation pa-
rameter, which is an arbitrary vector a ∈ Rn. The dimen-
sional parameter |a|= 1/κ has a very small length, which
yields the undeformed Euclidean space in the limit |a| → 0.
The NC coordinates and the generators of the generalized
rotations form an extended Lie algebra. The subalgebra
formed by the rotation generators is the ordinary SOa(n)
algebra, i.e. the ordinary Lorentz algebra in the case of κ-
deformed Minkowski space. Dirac derivatives are assumed
to commute mutually and transform as a vector represen-
tation under the SOa(n) algebra. This κ-deformed space
was studied by different groups, from both the mathe-
matical and physical point of view [13–35]. There is also
an interesting connection to the doubly special relativity

a e-mail: meljanac@thphys.irb.hr, meljanac@irb.hr
b e-mail: skresic@fesb.hr
c e-mail: marko.stojic@zg.htnet.hr

program [19–22]. Realizations of NC spaces in terms of
commutative coordinates and derivative operators have
been obtained and discussed in the cases of symmetric or-
dering and normal (left and right) ordering of NC coordi-
nates [17, 27]. An infinite family of noncovariant realiza-
tions was found in [28]. Although a single space may be
realized in many different ways, physical results do not de-
pend on concrete realizations, i.e. on the orderings [31].
Our aim in this paper is to construct covariant realiza-

tions for general κ-deformed Euclidean spaces depending
on an arbitrary deformation vector a. We analyze such
spaces by using the methods developed for deformed single
and multimode oscillators in the Fock space representa-
tions [37–51]. In particular, we use the methods for con-
structing deformed creation and annihilation operators in
terms of ordinary bosonic multimode oscillators, i.e. a kind
of bosonization [37–39,48]. Also, we employ the construc-
tion of transition number operators and, in general, the
construction of generators as proposed in [39–42,47].
The simple connection between creation and annihila-

tion operators with NC coordinates and Dirac derivatives
is established by using a Bargman type representation. We
find infinitely many new covariant realizations in terms of
commutative coordinates and derivative operators. The re-
alizations depend on certain parameter functions, but they
can all be treated on an equal footing, and the physical re-
sults do not depend on them. For a special choice of the
parameter functions we obtain some particularly simple
realizations: covariant left, right and natural realizations.
These realizations are considered in detail, and a coprod-
uct and star product are associated to each of them.
The outline of the paper is as follows. In Sect. 2 we in-

troduce a Lie algebra type of κ-deformed Euclidean space.
We also define the rotation algebra SOa(n) that is com-
patible with κ-deformations, and we introduce the Dirac
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derivative and the Laplace operator. The shift operator,
which plays an important role in describing the algebra
generated by NC coordinates, the rotation generators and
the Dirac derivative are also introduced. Special considera-
tion is given to the generalized Leibniz rule and coproduct.
We derive expressions for the coproduct of the rotation
generators and the Dirac derivative, and of the left and
right deformations of the ordinary derivative. Section 3
deals with covariant realizations of the κ-deformed Eu-
clidean space and the operators introduced in Sect. 2. We
find an infinite family of covariant realizations in terms of
commutative coordinates and derivative operators. In par-
ticular, we obtain two types of realizations (type I and type
II), which depend on an arbitrary parameter function ϕ.
For special choices of ϕ, we construct particularly simple
covariant realizations: left, right, symmetric and natural
realizations. In Sect. 4 we consider the star product for the
realizations discussed in Sect. 3. A general formula for the
star product is given to second order in the deformation
parameter a, and closed form expressions are obtained in
the left, right and symmetric realizations. We also intro-
duce the notion of equivalent star products, using similar-
ity transformations. We show that any star product in the
realization of type I can be obtained from the star product
in the right realization using similarity transformations. In
Sect. 4.4 we introduce scalar fields in NC coordinates and
demonstrate their simple properties in terms of the natural
realization. Constructions of invariants and the invariant
integration on NC spaces are also presented. Finally, in
Sect. 5 a brief conclusion is given.

2 Kappa-deformed Euclidean space

Consider a Lie algebra type noncommutative (NC) space
generated by coordinates x̂1, x̂2, . . . , x̂n satisfying the
commutation relations

[x̂µ, x̂ν ] = i(aµx̂ν −aν x̂µ) , (1)

where µ, ν = 1, . . . , n and a1, a2, . . . , an are the compo-
nents of a vector a ∈Rn that describes a deformation of the
Euclidean space [25–28]. The structure constants are given
by

Cµνλ = aµδνλ−aνδµλ . (2)

In the limit a→ 0, we have x̂µ→ xµ, the ordinary commu-
tative coordinates.
Let SOa(n) be the ordinary rotation algebra with gen-

eratorsMµν satisfying

Mµν =−Mνµ , (3)

[Mµν ,Mλρ] = δνλMµρ− δµλMνρ− δνρMµλ+ δµρMνλ .
(4)

We require that the rotation generatorsMµν and the coor-
dinates x̂µ form an extended Lie algebra. The most general
form of the commutator [Mµν , x̂λ] must be linear in Mµν
and x̂λ, antisymmetric in the indices µ and ν, and it must

have the smooth limit [Mµν , x̂λ]→ xµδνλ−xνδµλ as a→ 0.
The required form is given by

[Mµν , x̂λ] = x̂µδνλ− x̂νδµλ
+ isaλMµν − it (aµMνλ−aνMµλ)

+ iuaα (Mαµδνλ−Mανδµλ) (5)

for some s, t, u ∈ R, where summation over repeated in-
dices is assumed. The necessary and sufficient condition for
consistency of the extended Lie algebra is that the Jacobi
identity holds for all combinations of the generators Mµν
and x̂λ. One can verify that this is satisfied for the unique
values of the parameters s= u= 0 and t= 1 [28]. Hence,

[Mµν , x̂λ] = x̂µδνλ− x̂νδµλ− i (aµMνλ−aνMµλ) . (6)

Having introduced the rotation algebra SOa(n), it is natu-
ral to consider the Dirac derivativesDµ, satisfying

[Dµ, Dν ] = 0, (7)

[Mµν , Dλ] = δνλDµ− δµλDν . (8)

The generatorsMµ and Dλ form the undeformed ISOa(n)
algebra, i.e. the Poincaré algebra in the case of κ-deformed
Minkowski space. Note that the operator D2 =DµDµ is
invariant under rotations since [Mµν , D

2] = 0.
We also wish to define commutation relations for Dµ

and x̂ν . The consistency condition is that the Jacobi iden-
tity is satisfied for all combinations of the generatorsMµν ,
Dλ and x̂ρ. It can be shown [28] that the correct form of the
commutator is given by

[Dµ, x̂ν ] = δµν
√
1−a2D2+ iCµανDα . (9)

The algebra generated byDµ and x̂ν is a deformed Heisen-
berg algebra. We note that, in the limit a→ 0, the com-
mutation relations (1), (7) and (9) yield the ordinary un-
deformed Heisenberg algebra. Hence, Dµ→ ∂µ and x̂µ→
xµ as a→ 0, where ∂µ =

∂
∂xµ
. Particularly, in the one-

dimensional case, n= 1, (9) leads to a generalized uncer-
tainty relation with minimal length [52–54].
A function f(x̂,D), where f(x̂,D) denotes a for-

mal power series in the monomials x̂µ1 x̂µ2 . . . x̂µn and
Dν1Dν2 . . . Dνm , is said to be SOa(n) invariant if

[Mµν , f(x̂,D)] = 0 for all µ, ν . (10)

We introduce the SOa(n) invariant Laplace operator� sat-
isfying the commutation relations

[Mµν ,�] = 0 , (11)

[�, x̂µ] = 2Dµ . (12)

The Laplace operator can be expressed in terms of the op-
erator D2. Let us assume the Ansatz � = F (D2), where
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F is analytic, and impose the boundary condition of
F (D2)→ ∂2 as a→ 0. Then (11) is automatically satisfied,
and (9) and (12) together with the boundary condition
yield

�= 2
a2

(
1−
√
1−a2D2

)
. (13)

It follows that

D2 =�
(
1−
a2

4
�
)
. (14)

2.1 The shift operator

At this point it is convenient to introduce the shift operator
Z via the commutation relations

[Z, x̂µ] = iaµZ , (15)

[Z,Dµ] = 0 . (16)

We assume that Z→ 1 in the limit a→ 0. The shift opera-
tor acts on an arbitrary function f(x̂) by

Zf(x̂) = f(x̂+ ia)Z . (17)

We note that the inverse shift operator Z−1 satisfies the
same relations as Z if aµ is replaced by −aµ. The shift op-
erator can be expressed in terms of the Dirac derivative D
as follows. Using (9) and (12) one can verify that

[
−iaD−

a2

2
�, x̂µ

]
=−iaµ

(
−iaD+

√
1−a2D2

)
, (18)

where aD = aµDµ. Inserting (13) for the Laplace operator
into (18), we obtain [Z−1, x̂µ] =−iaµZ−1, where

Z−1 =−iaD+
√
1−a2D2 . (19)

Inverting the above expression, we find

Z =
iaD+

√
1−a2D2

1−a2D2+(aD)2
. (20)

It is interesting to note that the algebra generated by
x̂µ,Mµν and Dµ can be described using the shift operator
Z by the relations

x̂µZx̂ν = xνZx̂µ , (21)

[Dµ, x̂ν ] = δµνZ
−1+ iaµDν . (22)

The remaining commutation relations for [Mµν ,Mλρ],
[Mµν , x̂λ] and [Mµν , Dλ] are satisfied by representingMµν
in the unique way as

Mµν = (x̂µDν − x̂νDµ)Z . (23)

We will justify this relation later when we consider the so-
called natural realization in Sect. 3.

2.2 The Leibniz rule and coproduct

Now we turn our attention to the generalized Leibniz rule
and coproduct. The commutator ofMµν with an arbitrary
function f(x̂) is given by

[Mµν , f ] = (Mµνf)+ iaµ

[(
Dλ−

iaλ
2
�
)
Zf

]
Mλν

− iaν

[(
Dλ−

iaλ
2
�
)
Zf

]
Mλµ . (24)

This relation can be shown by using (6) and proceeding by
induction on the degree of the monomials in x̂µ. From (24)
we obtain the coproduct forMµν ,

�Mµν =Mµν ⊗1+1⊗Mµν

+ iaµ

(
Dλ−

iaλ
2
�
)
Z⊗Mλν

− iaν

(
Dλ−

iaλ
2
�
)
Z⊗Mλµ . (25)

Similarly, one can show that the commutator of Dµ with
f(x̂) is given by

[Dµ, f ] = (Dµf)Z
−1+ iaµ(DλZf)Dλ−

iaµ
2
(�Zf)iaD ;

(26)

hence we have for the coproduct

�Dµ =Dµ⊗Z
−1+1⊗Dµ+ iaµ(DλZ)⊗Dλ

−
iaµ
2
�Z⊗ iaD . (27)

Furthermore, the coproduct for the shift operator Z is
simply

�Z = Z⊗Z . (28)

Some examples of the Poincaré invariant interpretation of
NC spaces and of the twisted Poincaré coalgebra were also
considered in [55–58].
It is interesting to note that the operators Dµ, � and

Z can be expressed in terms of the auxiliary derivatives ∂Lµ
and ∂Rµ satisfying the following commutation relations:

[
∂Lµ , ∂

L
ν

]
= 0 , (29)

[
∂Lµ , x̂ν

]
= δµνZ

−1 (30)

and

[
∂Rµ , ∂

R
ν

]
= 0 , (31)

[
∂Rµ , x̂ν

]
= δµν + iaν∂

R
µ . (32)

Equations (29)–(30) and (31)–(32) are consistent with the
commutation relation (1), and hence both sets of equa-
tions define a deformed Heisenberg algebra. One can think
of ∂Lµ and ∂

R
µ as “left” and “right” deformations of the



232 S. Meljanac et al.: Covariant realizations of kappa-deformed space

ordinary derivative ∂µ. Indeed, using the commutation re-
lations (30) and (32), one can show that the coproducts of
∂Lµ and ∂

R
µ are given by

�∂Lµ = ∂
L
µ ⊗Z

−1+1⊗∂Lµ, (33)

�∂Rµ = ∂
R
µ ⊗1+Z⊗∂

R
µ (34)

and ∂Rµ = ∂
L
µZ. Hence, the coproducts �∂

L
µ and �∂

R
µ

are left and right deformations of the ordinary coproduct
�∂µ = ∂µ⊗1+1⊗∂µ, respectively. In fact, the coproducts
�∂Lµ and �∂

R
µ are given by (33)–(34) if and only if (30)

and (32) hold. One can show that the operatorsDµ, � and
Z are expressed in terms of the left and right deformation
derivatives as

Dµ = ∂
L
µ +
iaµ
2
� , (35)

�= (∂L)2Z , (36)

Z = 1+ i(a∂L)Z =
1

1− ia∂L
(37)

and

Dµ = ∂
R
µZ

−1+
iaµ
2
� , (38)

�= (∂R)2Z−1 , (39)

Z = 1+ ia∂R . (40)

The algebra generated by x̂µ, Mµν and Dµ is covari-
ant under the action of the rotation group SO(n). Indeed,
let R ∈ SO(n) be a rotation matrix, and let us denote
the transformed variables by x̂′µ = Rµαx̂α, D

′
µ = RµαDα,

M ′µν = RµαRνβMαβ and a
′
µ =Rµαaα. Then (13) and (20)

immediately yield

�′ =� and Z ′ = Z , (41)

and the transformed generators x̂′µ, M
′
µν and D

′
µ satisfy

the relations

x̂′µZx̂
′
ν = x̂

′
νZx̂

′
µ , (42)

[
D′µ, x̂

′
ν

]
= δµνZ

−1+ ia′µD
′
ν , (43)

M ′µν = (x̂
′
µD
′
ν− x̂

′
νD
′
µ)Z . (44)

3 Covariant realizations

A realization of the NC coordinates x̂µ in terms of ordinary
commutative coordinates and their derivatives was found
using the Bargman representation and the methods de-
veloped in [37–39,47, 48]. The goal of this section is to find
covariant realizations of the algebra generated by the NC
coordinates x̂µ, the rotation generatorsMµν and the Dirac
derivativesDµ. The realizations are found in terms of func-
tions of the ordinary coordinates x1, x2, . . . , xn and their
derivatives ∂1, ∂2, . . . , ∂n, which generate the Heisenberg
algebra [xµ, xν ] = [∂µ, ∂ν ] = 0 and [∂µ, xν ] = δµν . In gen-
eral, these functions will satisfy a system of coupled partial

differential equations (PDEs) determined by the commu-
tation relations for x̂µ, Mµν and Dµ. In the following we
derive such systems of PDEs, and next we consider their
solutions.
The most general Ansatz for x̂µ is

x̂µ = xαΦαµ(A,B) , (45)

where Φαµ is a function of the commuting variables A =
ia∂ and B = a2∂2, and it satisfies the boundary condi-
tion Φαµ(0, 0) = δαµ. This realization is covariant under
the orthogonal transformation R ∈ SO(n) (c.f. Sect. 2.2
and x′µ =Rµαxα, ∂

′
ν =Rµα∂α), i.e. under the action of the

generators,

M0µν = xµ∂ν −xν∂µ+aµ
∂

∂aν
−aν

∂

∂aµ
. (46)

We consider the particular form of the above Ansatz given
by

x̂µ = xµϕ+ i(ax)
(
∂µβ1+ iaµ∂

2β2
)

+ i(x∂)
(
aµγ1+ ia

2∂µγ2
)
, (47)

where ϕ, βi and γi are functions of A and B. We impose
the boundary conditions of ϕ(0, 0) = 1 and of βi(0, 0) and
γi(0, 0) being finite in order to ensure the smooth limit
x̂µ→ xµ as a→ 0. Substituting the Ansatz (47) into (1), we
obtain the following system of differential equations:

∂ϕ

∂A
ϕ−B

(
∂ϕ

∂A
−2A

∂ϕ

∂B

)
β2

+

(
A
∂ϕ

∂A
+2B

∂ϕ

∂B

)
γ1−ϕ(γ1−1) = 0 , (48)

2
∂ϕ

∂B
ϕ−

(
∂ϕ

∂A
−2A

∂ϕ

∂B

)
β1

−

(
A
∂ϕ

∂A
+2B

∂ϕ

∂B

)
γ2+ϕγ2 = 0 , (49)

(
∂β1

∂A
−2B

∂β2

∂B

)
ϕ−B

(
∂β1

∂A
−2A

∂β1

∂B

)
β2

+B

(
∂β2

∂A
−2A

∂β2

∂B

)
β1+

(
A
∂β1

∂A
+2B

∂β2

∂B

)
γ1

+B

(
A
∂β2

∂A
+2B

∂β2

∂B

)
γ2

−
(
β21 +2Aβ1β2

)
+Bβ2γ2−2β2ϕ+β1 = 0 , (50)

−

(
2
∂γ1

∂B
+
∂γ2

∂A

)
ϕ+

(
∂γ1

∂A
−2A

∂γ1

∂B

)
β1

+

(
∂γ2

∂A
−2A

∂γ2

∂B

)
Bβ2+

(
A
∂γ1

∂A
+2B

∂γ1

∂B

)
γ2

−

(
A
∂γ2

∂A
+2B

∂γ2

∂B

)
γ1+γ2(β1−γ1−1) = 0 . (51)
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Next, we consider realizations of the rotation algebra
SOa(n). We assume that the rotation generators are given
by the Ansatz

Mµν = (xµ∂ν−xν∂µ)F1+ i(x∂)(aµ∂ν −aν∂µ)F2

+ i(xµaν −xνaµ)∂
2F3 , (52)

where the functions F1, F2 and F3 depend on A and B
and satisfy the boundary conditions of F1(0, 0) = 1 and of
F2(0, 0) and F3(0, 0) being finite, respectively. The bound-
ary conditions imply that Mµν becomes the ordinary ro-
tation generator as a→ 0. The Ansatz is antisymmetric in
the indices µ and ν. Now we can calculate the commuta-
tor [Mµν ,Mλρ] by inserting the Ansatz (52) into (4). This
results in the system of equations

F1 = 1,
∂F3
∂A
+

(
F3+A

∂F3
∂A

)
F2−2F

2
3 = 0 . (53)

Since F2 is uniquely determined by F3, these equations
provide a realization of the algebra SOa(n) in terms of an
arbitrary parameter functionF3. However,Mµν and x̂µ are
required to form the extended Lie algebra (6); hence F3 is
related to the functions ϕ, βi and γi. This relation can be
shown either directly from (6) or by using a realization of
the Dirac operatorDµ and (23).
We assume that the Dirac operator is given by

Dµ = ∂µG1+ iaµ∂
2G2 . (54)

Here the functions G1 and G2 depend on A and B and sat-
isfy the boundary conditions of G1(0, 0) = 1 and of G2(0, 0)
being finite, respectively. Inserting (54) into (9), we obtain

√
1−a2D2− iaD = G1ϕ , (55)

∂G1
∂A
ϕ+

(
−
∂G1
∂A
+2A

∂G1
∂B

)
Bβ2

+

(
G1+A

∂G1
∂A
+2B

∂G1
∂B

)
γ1 = 0 ,

(56)

2
∂G1
∂B
ϕ+

(
2A
∂G1
∂B
−
∂G1
∂A

)
β1

−

(
G1+A

∂G1
∂A
+2B

∂G1
∂B

)
γ2 = 0 ,

(57)

G1β2+
∂G2
∂A
ϕ+2AG2β2+B

(
2A
∂G2
∂B
−
∂G2
∂A

)
β2

+

(
2G2+A

∂G2
∂A
+2B

∂G2
∂B

)
γ1 = G2 , (58)

G1β1+

(
2G2+2B

∂G2
∂B

)
ϕ+2AG2β1

+

(
2A
∂G2
∂B
−
∂G2
∂A

)
Bβ1

−

(
2G2+

∂G2
∂A
A+2B

∂G2
∂B

)
Bγ2 = G1 . (59)

Equations (55) and (20) imply that the inverse shift opera-
tor has the simple realization

Z−1 = G1ϕ . (60)

The system of PDEs for the unknown functions ϕ, βi,
γi, Fi and Gi is too difficult to solve in full generality. We
will reduce the system to a manageable form by consider-
ing special choices for the functions β1 and β2: β1 = β2 = 0,
and β1 = 1 and β2 = 0. In each case, we obtain an infinite
family of realizations parametrized by the function ϕ. We
call these realizations type I and type II, respectively. In
realization, (47)–(51) imply

x̂µ = xµϕ+ i(x∂)
(
aµγ1+ ia

2∂µγ2
)
, (61)

where

γ1 =

(
1+ ∂ϕ

∂A

)
ϕ

ϕ−
(
A ∂ϕ
∂A
+2B ∂ϕ

∂B

) , (62)

γ2 =−
2 ∂ϕ
∂B
ϕ

ϕ−
(
A ∂ϕ∂A +2B

∂ϕ
∂B

) . (63)

Furthermore, (56)–(59) yield

G1 =
1

ϕ+A
, G2 =

1

2ϕ(ϕ+A)
. (64)

We note that, in view of (60), the shift operator is given by

Z = 1+
A

ϕ
. (65)

We are now able to find realizations of the rotation gener-
atorsMµν . Inserting the realizations for x̂µ,Dµ and Z into
(23) and comparing the obtained expression with (52), we
find

F1 = 1 ,

F2 =
γ1

ϕ
+
Bγ2

2ϕ2
=

(
1+ ∂ϕ

∂A

)
ϕ−B ∂ϕ

∂B

ϕ2−
(
A ∂ϕ∂A +2B

∂ϕ
∂B

)
ϕ
,

F3 =
1

2ϕ
. (66)

Note that F1 = 1 is consistent with the expression earlier
obtained in (53). Next, we find a realization of the Laplace
operator � that is uniquely determined by (13). Using
the realizations for Z and Dµ in (64) and (65), we obtain√
1−a2D2 = 1−a2∂2G2. Therefore, (13) yields

�= ∂2H , where H= 1

ϕ(ϕ+A)
. (67)

Note that, since ϕ(0, 0) = 1 andA→ 0 as a→ 0, in the limit
we have�→ ∂2 as a→ 0. For realization II we have β1 = 1
and β2 = 0. Repeating the above calculations in the second
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realization we find

x̂µ = xµϕ+ i(ax)∂µ+ i(a∂)
(
aµγ1+ ia

2∂µγ2
)
, (68)

where

γ1 =

(
1+ ∂ϕ

∂A

)
ϕ

ϕ−
(
A ∂ϕ
∂A
+2B ∂ϕ

∂B

) , (69)

γ2 =
∂ϕ
∂A
−2(ϕ+A) ∂ϕ

∂B

ϕ−
(
A ∂ϕ∂A +2B

∂ϕ
∂B

) . (70)

The functions G1 and G2 are given by

G1 =
1

√
(ϕ+A)2+B

, G2 = 0 , (71)

and the shift operator yields

Z =

√(
1+
A

ϕ

)2
+
B

ϕ2
. (72)

Similarly, for F1, F2 and F3 we obtain

F1 = 1 ,

F2 =
γ1

ϕ
=

1+ ∂ϕ∂A

ϕ−
(
A ∂ϕ
∂A
+2B ∂ϕ

∂B

) ,

F3 = 0. (73)

Note that F1, F2 and F3 in all realizations are consistent
with (23). Furthermore, for the Laplace operator we have
�= ∂2H where

H=
2

B
(1− (ϕ+A)G1) =

2

B

(

1−
ϕ+A

√
(ϕ+A)2+B

)

.

(74)

3.1 Special realizations

Of particular interest are some realizations obtained for
a special choice of the parameter function ϕ. In the re-
alization of type I we consider the left , right and sym-
metric realizations corresponding to ϕL = 1−A, ϕR = 1
and ϕS =A/(exp(A)−1), respectively. One can show that
in the left realization the derivative operator ∂µ becomes
the left deformation derivative ∂Lµ . Similarly, in the right
realization the derivative operator ∂µ becomes the right
deformation derivative ∂Rµ . The symmetric realization is
related to Weyl’s symmetric ordering of the monomials in
x̂µ. In the realization of type II we consider the natural
realization corresponding to ϕN =−A+

√
1−B. In this re-

alization the Dirac derivative is simply given byDµ = ∂µ.

For the left realization we have β1 = β2 = 0 and ϕL =
1−A. Inserting ϕL = 1−A into (61)–(67), we find

x̂µ = xµ(1−A) , (75)

Mµν = xµ∂ν −xν∂µ+
1

2
i(xµaν −xνaµ)

1

1−A
∂2 ,

(76)

Dµ = ∂µ+
iaµ
2
� , (77)

Z =
1

1−A
, (78)

�= 1

1−A
∂2 . (79)

It follows from (75) and (78) that

[∂µ, x̂ν ] = δµνZ
−1 . (80)

Thus, in view of (30), we see that ∂µ is the left deformation
derivative ∂Lµ . For the right realization we have β1 = β2 =
0 and ϕR = 1. Repeating the calculations with ϕR = 1, we
obtain

x̂µ = xµ+ iaµ(x∂) , (81)

Mµν = xµ∂ν −xν∂µ+ i(x∂)(aµ∂ν −aν∂µ)

+
i

2
(xµaν−aνxµ)∂

2 , (82)

Dµ =
1

1+A
∂µ+

iaµ
2
� , (83)

Z = 1+A , (84)

�= 1

1+A
∂2 . (85)

In this case,

[∂µ, x̂ν ] = δµν + iaν∂µ ; (86)

hence, a comparisonwith (32) shows that ∂µ is the right de-
formation derivative ∂Rµ . For the symmetric realization we
have β1 = β2 = 0 and ϕS =A/(exp(A)−1).
This realization corresponds to the symmetric Weyl or-

dering [28]. It also follows from the universal formula for
a general Lie algebra [59], after inserting the structure con-
stants from (2). We have

x̂µ = xµ
A

eA−1
+ iaµ(x∂)

eA−1−A

(eA−1)A
, (87)

Mµν = xµ∂ν −xν∂µ+ i(x∂)(aµ∂ν −aν∂µ)
eA−1−A

A2
,

(88)

Dµ =
eA−1

AeA
∂µ+

iaµ
2
� , (89)

Z = eA , (90)

�= (e
A−1)2

A2eA
∂2 (91)

and

[∂µ, x̂ν ] = δµνϕS+ iaν∂µ
1−ϕS
A

.
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For the natural realization we have β1 = 1, β2 = 0, and
ϕN = −A+

√
1−B. The natural realization is a special

case of the realization of type II in which the Dirac deriva-
tiveDµ = ∂µG1+ iaµ∂2G2 simplifies toDµ = ∂µ. In view of
(71), this holds when ϕN =−A+

√
1−B. Then we have

x̂µ = xµ

(
−A+

√
1−B

)
+ i(ax)∂µ , (92)

Mµν = xµ∂ν −xν∂µ , (93)

Dµ = ∂µ , (94)

Z =
1

−A+
√
1−B

, (95)

�= 2
B

(
1−
√
1−B

)
∂2 . (96)

In the natural realization it is easily shown that the rota-
tion generators Mµν are given by (23). Indeed, (92) and
(94) imply that

(x̂µDν − x̂νDµ)Z = (xµ∂ν −xν∂µ)ϕZ . (97)

However, ϕZ = 1; thus, (93) and (97) yield

Mµν = (x̂µDν − x̂νDµ)Z . (98)

3.2 Hermiticity

All relations of the type [x̂µ, x̂ν ], [Mµν ,Mλρ], [Mµν , x̂λ],
[Dµ, Dν ], [Mµν , Dλ] and [Dµ, x̂ν ], i.e. (1), (4), (6), (7), (8)
and (9), are invariant under the formal antilinear involu-
tion:

x̂†µ = x̂µ , D
†
µ =−Dµ , M

†
µν =−Mµν ,

c† = c̄ , c ∈ C . (99)

The order of elements in the product is inverted under
the involution. The commutative coordinates xµ and their
derivatives ∂µ also satisfy the involution property: x

†
µ = xµ

and ∂†µ = −∂µ. Then the NC coordinates x̂µ are repre-
sented by hermitian operators. However, (45) is generally
not hermitian. The hermitian representations are simply
obtained by the following expression [28]:

x̂hµ =
1

2

(
xαΦαµ+(Φ

†)µαxα
)
. (100)

However, the physical results do not depend on the choice
of representation as long as there exists a smooth limit
x̂µ→ xµ as a→ 0. Therefore, we restrict ourselves to non-
hermitian realizations only.

4 Star product

Recall that in Sect. 3 a general Ansatz for the NC coordi-
nates was introduced,

x̂µ = xαΦαµ(A,B) , Φαµ(0, 0) = δαµ . (101)

Let us define the vacuum state by |0〉= 1 and ∂µ|0〉= 0 and
fix the normalization condition by x̂µ|0〉= xµ. For a given
realization Φµν , there is a unique map sending monomials
in the NC coordinates x̂µ into polynomials of the commu-
tative coordinates xµ. This map is given by

k∏

i=1

x̂µi |0〉= Pk(x) , (102)

where Pk is a polynomial of degree k. We also have the dual
relation

k∏

i=1

xµi = P̂k(x̂)|0〉 , (103)

where P̂k is also a polynomial of degree k in x̂. For example,
in the left realization we have

k∏

i=1

x̂µi |0〉= xµ1(xµ2 − iaµ2)(xµ3 − i2aµ3) . . .

× (xµk − i(k−1)aµk) , (104)

together with the dual relation

k∏

i=1

xµi = x̂µ1Zx̂µ2 . . . Zx̂µk |0〉 . (105)

Similarly, in the right realization we find

k∏

i=1

x̂µi |0〉= (xµ1 + i(k−1)aµ1)(xµ2 + i(k−2)aµ2) . . .

× (xµk−1+ iaµk−1)xµk , (106)

k∏

i=1

xµi = Z
−(k−1)x̂µ1Zx̂µ2 . . . Zx̂µk |0〉 . (107)

One can obtain similar expressions for the symmetric real-
ization [28]. It is interesting to note that in the realization
of type I when ϕ= ϕ(A) the following relation holds:

eikx̂|0〉= exp

(
i
ϕ(−ak)

ϕS(−ak)
kx

)
, (108)

where k ∈ Rn and ϕS(A) = A/(exp(A)−1). In particular,
in the symmetric realization when ϕ= ϕS, we have

eikx̂|0〉= eikx . (109)

Similarly, in the natural realization one can show that

eikx̂|0〉= eiPN(k)x , (110)

where

PN(k)µ =
1

ϕS(ak)

(
kµ−

k2

2ϕS(−ak)
aµ

)
. (111)

Equation (102) defines an isomorphism of the univer-
sal enveloping algebras generated by x̂1, x̂2, . . . , x̂n and
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x1, x2, . . . , xn, respectively. This can be extended to a for-
mal power series by

f̂(x̂)|0〉= f(x) , (112)

where the function f depends on the realization Φµν .
The Leibniz rule and the related coproduct �∂µ follow
uniquely from the commutator relation

[∂µ, x̂ν ] = Φµν(A,B) (113)

and the conditions ∂µ|0〉= 0 and x̂µ|0〉= xµ.
The star product of the two functions f(x) and g(x) is

defined by

(f 	 g)(x) = f̂(x̂)ĝ(x̂)|0〉 . (114)

We emphasize that the star product depends on the real-
ization Φµν . The result relating the star product and the
coproduct obtained for the noncovariant realizations [28]
can be extended to covariant realizations of κ-deformed
space, (1), as follows:

(f 	 g)(u) =m
(
euα(�−�0)∂αf(x)⊗ g(y)

) ∣∣∣x=u
y=u

, (115)

wherem is the multiplication map in the Hopf algebra, and
�0∂µ = ∂µ⊗1+1⊗∂µ is the undeformed coproduct.

4.1 Star product for the realization of type I

In this subsection we discuss the star product in the real-
ization of type I assuming that the parameter function ϕ
depends only on the variable A= ia∂. In view of (61), we
have

x̂µ = xµϕ(A)+ i(x∂)aµγ(A) , (116)

where

γ(A) =
1+ϕ′(A)

1−Aϕ
′(A)
ϕ(A)

, ϕ(0) = 1 . (117)

In order to find the coproduct�∂µ, we note that in this re-
alization ∂µ = ϕ(A)∂

R
µ . The coproduct for ∂

R
µ is given by

(34); hence

�∂µ =�ϕ(A)�∂
R
µ

=�ϕ(A)

[
1

ϕ(A)
∂µ⊗1+Z⊗

1

ϕ(A)
∂µ

]
.

(118)

Inverting the expression for the shift operator Z = 1+
A/ϕ(A), we find

A= (Z−1)+ϕ′(0)(Z−1)2+ · · · , (119)

which, together with �Z = Z⊗Z, allows us to calculate

the coproduct�ϕ(A). Then, to second order in the param-
eter a, (118) leads to

�∂µ = ∂
x
µ

[
1+ϕ′(0)Ay+

(
ϕ′′(0)+(ϕ′(0))2+ϕ′(0)

)
AxAy

+
1

2
ϕ′′(0)A2y

]

+∂yµ

[
1+(1+ϕ′(0))Ax

+
(
ϕ′′(0)+(ϕ′(0))2+ϕ′(0)

)
AxAy

+
1

2
ϕ′′(0)A2x

]
, (120)

where Ax = ia∂
x and Ay = ia∂

y. Consequently, the star
product from (115) is given by

(f 	 g)(u)

=

{

1+u∂x
[
ϕ′(0)Ay+

(
ϕ′′(0)+(ϕ′(0))2+ϕ′(0)

)
AxAy

+
1

2
ϕ′′(0)A2y

]

+u∂y

[
(1+ϕ′(0))Ax+

(
ϕ′′(0)+(ϕ′(0))2+ϕ′(0)

)
AxAy

+
1

2
ϕ′′(0)Ax

]

+
1

2
[ϕ′(0)u∂xAy+(1+ϕ

′(0))u∂yAx]
2

}

f(x)g(y)

∣∣∣∣∣x=u
y=u

.

(121)

One can show that the dual relation holds

(f 	 g)ϕ(A) = (g 	 f)ϕ(−A)−A , (122)

where the star products correspond to the functions ϕ(A)
and ϕ(−A)−A, respectively.

4.2 Star product for special realizations

In this subsection we give the star products in closed form
for the left, right and symmetric realizations, as well as the
star product to second order in a in the natural realization.
For the left realization we have ϕL = 1−A; now

(f 	 g)ϕL(u) = e
−uα∂

x
αAyf(x)g(y)

∣∣∣x=u
y=u

. (123)

For the right realization we have ϕR = 1; now

(f 	 g)ϕR(u) = e
uα∂

y
αAxf(x)g(y)

∣∣∣x=u
y=u

. (124)

The “left” and “right” star products satisfy the symmetry
relation

(f 	 g)ϕL = (g 	 f)ϕR . (125)
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For the symmetric realization we have ϕS=A/(exp(A)−1);
now

(f 	 g)ϕS(u) = e
uα(�−�0)∂αf(x)g(y)

∣∣∣x=u
y=u

, (126)

where

�0∂µ = ∂
x
µ+∂

y
µ, (127)

�∂µ = ∂
x
µ

ϕS(Ax+Ay)

ϕS(Ax)
+∂yµ

ϕS(−Ax−Ay)

ϕS(−Ay)
. (128)

In this case, we have

(f 	 g)ϕS(A) = (g 	 f)ϕS(−A) . (129)

The symmetric realization ϕ = ϕS corresponds to the
symmetric Weyl ordering [28]. Our closed form results,
(126) and (128), are in agreement with the general se-
ries expansion for the star product of the Lie algebra
type NC space [60]. For the natural realization we have
ϕN = −A+

√
1−B. In this realization ∂µ = Dµ; hence

the coproduct �∂µ is given by (27). One can show that
to second order in the parameter a the star product
yields

(f 	 g)ϕN(u)

= f(u)g(u)+

{

uµ

[(
−∂xµ−

iaµ
2a2
a2α(∂

x
α)
2

)
Ay

−
1

2
∂xµa

2
α(∂

y
α)
2+ iaµ(1+Ax)∂

x∂y

]

+
1

2
uµuν

[
∂xµ∂

y
νA
2
y−2iaµ∂

x
ν ∂
x∂yAy−aµaν(∂

x∂y)2
]}

×f(x)g(y)

∣∣∣∣∣x=u
y=u

, (130)

where ∂x∂y = ∂xα∂
y
α.

4.3 Equivalent star products

So far, we have considered the star product for some spe-
cific realizations of type I and II. We point out, however,
that infinitely many realizations of the star product can be
constructed by similarity transformations of the variables
xµ and ∂µ. In the following we consider the star products
obtained by similarity transformations starting from the
right realization.
Recall that in the right realization we have

x̂µ = x
R
µ + iaµ(x

R∂R) , (131)

and the star product is given by (124). (From now on the
variables xµ and ∂µ used in the right realization will be
denoted by xRµ and ∂

R
µ , respectively.) The similarity trans-

formation is defined by

xµ = S
−1xRµS , (132)

∂µ = S
−1∂Rµ S . (133)

Clearly, the new variables xµ and ∂µ also generate the
Heisenberg algebra. We define the vacuum condition on S
by S|0〉= |0〉. In view of (124), the star product induced by
the similarity transformation S is given by

(f 	
S
g)(u) = S

(
S−1f 	S−1g

)
ϕR
(u)

= Seuα∂
y
αAx(S−1f)(x)(S−1g)(y)

∣∣∣x=u
y=u

.

(134)

Two star products are said to be equivalent if they are re-
lated by a similarity transformation. For example, if S =
e−x∂Ax , then

(f 	 g)ϕL(u) = S
(
S−1f 	S−1g

)
ϕR
(u) ; (135)

hence, the star products for the left and right realization
are equivalent. We will show that all realizations of type I
with ϕ = ϕ(A) lie in the orbits of the action of similar-
ity transformations of the right realization. Hence, any two
star products in realizations of this type are equivalent.
Consider a realization of type I,

x̂µ = xµϕ(A)+ iaµ(x∂)
1+ϕ′(A)

1−Aϕ
′(A)
ϕ(A)

, ϕ(0) = 1 . (136)

The transformation (xµ, ∂µ) �→ (xRµ , ∂
R
µ ), which maps the

realization (131) into (136), is given by

xRµ = xµϕ(A)+ iaµ(x∂)
ϕ′(A)

1−Aϕ
′(A)
ϕ(A)

, (137)

∂Rµ = ∂µ
1

ϕ(A)
. (138)

We show that there exists a similarity operator of the form
S = exp(U),

U = (x∂)
∞∑

k=1

ckA
k , (139)

such that (137) and (138) are given by xRµ = SxµS
−1 and

∂Rµ = S∂µS
−1, respectively. Then (138) yields

exp(ad(U))∂µ = ∂µ
1

ϕ(A)
. (140)

By expanding both sides of (140) into a power series in
A, one can show that the coefficients ck are uniquely de-
termined by the function ϕ(A). Expanding the right-hand
side of (140) leads to

∂µ
1

ϕ(A)
= ∂µ

(

1+
∞∑

p=1

1

p!
εpA

p

)

, (141)
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where the coefficients εp can be found recursively from

ε1 =−ϕ
′(0) , (142)

εp =−ϕ
(p)(0)−

p−1∑

k=1

(
p

k

)
ϕ(k)(0)εp−k , p≥ 2 .

(143)

Similarly, the expansion of the left-hand side of (140) gives

exp(ad(U))∂µ = ∂µ

(

1+
∞∑

p=1

γpA
p

)

, (144)

where the coefficients γp are found in terms of ck, as follows:

γ1 =−c1 , (145)

γp =−cp+
p∑

n=2

(−1)n

n!
β(n)p , p≥ 2 . (146)

Here,

β(n)p =
∑

|k|=p

Ψ(k)
n∏

i=1

cki , (147)

where k = (k1, k2, . . . , kn), ki ∈ N, is a multi-index with
length |k|=

∑n
i=1 ki, the function Ψ(k) is defined by

Ψ(k) = (1+kn)(1+kn+kn−1) . . .

(

1+
n∑

k=2

ki

)

, (148)

and the summation is taken over all multi-indices such that
|k|= p. It follows from (141) and (144) that

c1 =−ε1 , (149)

cp =

p∑

n=2

(−1)n

n!
β(n)p −

1

p!
εp , p≥ 2 . (150)

Note that the coefficient cp is uniquely determined by
c1, c2, . . . , cp−1. Hence, (149) and (150), together with
(142) and (143), provide recursion relations for cp in terms
of ϕ(k)(0); thus S is uniquely determined by ϕ(A). For ex-
ample, the first three coefficients are given by c1 = ϕ

′(0),
c2 =

1
2ϕ
′′(0), c3 =

1
6ϕ
′′′(0)+ 14ϕ

′(0)ϕ′′(0). Equations (134)
and (139), together with c1 and c2, reproduce the star
product given by (121). This represents an important con-
sistency check of our approach.
Note that our covariant realizations for x̂µ, (47), and for

Dµ, (54), follow from S = e
U , where

U = (x∂)Φ1(A,B)+ (xa)∂
2Φ2(A,B) ,

with the boundary conditions of Φ1(0, 0) = 0 and of
Φ2(0, 0) being finite.

4.4 Scalar fields and invariants
on kappa-deformed space

All covariant realizations are physically equivalent. Here
we consider the natural realization xN and ∂N defined
by Dµ = ∂

N
µ and Mµν = x

N
µ ∂
N
ν −x

N
ν ∂
N
µ (c.f. Sects. 3.1

and 4.2). The realization of the NC coordinates is given
by (92),

x̂µ = x
N
µZ

−1+ i(axN)∂Nµ . (151)

Let us consider a scalar field Φ̂(x̂) in the NC coordinates
satisfying [Mµν , Φ̂(x̂)] = 0 for all µ, ν. We define the scalar
field Φ(xN) in the undeformed space by

Φ̂
(
x̂(xN)

)
|0〉= Φ(xN) . (152)

The ordinary Fourier transform is defined by

Φ̃(k) =

∫
dnxNe−ikx

N
Φ(xN) , k ∈ Rn . (153)

Then using the relation (110),

eikx̂|0〉= eiPN(k)x
N
, (154)

where PN(k) is given by (111), we find

Φ̂(x̂) =

∫
dnkΦ̃(k)eiP

−1
N
(k)x̂ , (155)

which holds in any realization of x̂. Here P−1N denotes the
inverse function of PN,

P−1N (k)µ =
lnZ−1(k)

Z−1(k)−1

(
kµ+

aµ

a2
(
√
1+a2k2−1)

)
,

where

Z−1(k) =
√
1+a2k2+ak .

The above relation, (155), represents a construction of the
SOa(n) invariants Φ̂(x̂) in terms of Φ(x

N) and Φ̃(k) by
using the natural realization (92). Alternatively, from (92)
we obtain the inverse mapping

xNµ =

⎛

⎝x̂µ− i(ax̂)
∂Nµ√

1−a2(∂Nµ )
2

⎞

⎠Z . (156)

Then we find

Φ
(
xN(x̂)

)
|0〉= Φ̂(x̂) . (157)

Both constructions are consistent, and they are equiva-
lent. Furthermore, we define the invariant integration
over the entire NC space using the natural realization, as
follows:

∫
Φ̂(x̂) =

∫
dnxNΦ(xN) , (158)
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with the property
∫
Φ̂1(x̂)Φ̂2(x̂) =

∫
dnxN(Φ1 	Φ2)N(x

N) . (159)

A generalized action of the scalar field Φ(x̂) on the NC
κ-deformed space is simply the action of the ordinary
scalar field in natural coordinates xN on the undeformed
space in which pointwise multiplication of fields is replaced
by 	-mulitplication in the natural realization. Further in-
vestigation of this problem is in progress and will be pub-
lished separately.

5 Conclusion

We have constructed covariant realizations of a general κ-
deformed space in terms of commutative coordinates xµ
and their derivatives ∂µ in the undeformed space. Our con-
struction can also be applied to spaces with arbitrary sig-
natures, especially to Minkowski type spaces.
Particularly, we have studied the κ-deformed space

whose deformation is described by an arbitrary vector. The
NC coordinates and rotation generators form an extended
Lie algebra. The subalgebra of the rotation generators,
SOa(n), is undeformed. The Dirac derivatives mutually
commute and are vector-like under the action of SOa(n).
By introducing the shift operator the deformed Heisenberg
algebra is written in a very simple way. We have presented
the Leibniz rule and coproduct for the rotation generators
Mµν and the Dirac derivativesDµ in a covariant form.
We have found two types of covariant realizations,

which are described by an arbitrary function ϕ(A) with
ϕ(0) = 1. We point out that all covariant realizations are
equivalent and can be treated on an equal footing. We have
constructed coproducts and star products for covariant
realizations. There is an important relation between the
coproduct and the star product in terms of an exponen-
tial map for a given realization. Specially, we have found
a few realizations (covariant left, right, symmetric and nat-
ural) which have very simple properties. All realizations
of type I are related by similarity transformations and the
corresponding star products are equivalent. We have con-
sidered scalar fields in NC coordinates and demonstrated
their simple properties using the natural realization. The
constructions of invariants and invariant integration on NC
spaces are also discussed.
Our approach may be useful in quantum gravity

models, specially in 2+1 dimensions. In this case, the cor-
responding Lie algebra is SU(2) or SU(1, 1) [61–64]. It
would be interesting to classify NC spaces with covariant
realizations in which NC coordinates and rotation gener-
ators form an extended Lie algebra. For example, Snyder
space is of this type, and covariant realizations in terms of
undeformed space exist [65].
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29. L. Möller, JHEP 0512, 029 (2005) [hep-th/0409128]
30. A. Agostini, G. Amelino-Camelia, M. Arzano, F. D’An-
drea, hep-th/0407227

31. A. Agostini, G. Amelino-Camelia, M. Arzano, A. Mar-
ciano, R.A. Tacchi, hep-th/0607221



240 S. Meljanac et al.: Covariant realizations of kappa-deformed space

32. L. Freidel, J. Kowalski-Glikman, S. Nowak, hep-th/
0612170

33. S. Ghosh, Phys. Lett. B 623, 251 (2005) [hep-th/0506084]
34. S. Ghosh, P. Pal, Phys. Lett. B 618, 243 (2005) [hep-th/
0502192]

35. S. Ghosh, Phys. Rev. D 74, 084019 (2006) [hep-th/
0608206]

36. H.-C. Kim, J.H. Yee, C. Rim, hep-th/0701054
37. D. Bonatsos, C. Daskaloyannis, Phys. Lett. B 307, 100
(1993)
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51. I. Dadić, L. Jonke, S. Meljanac, Acta Phys. Slovaca 55, 149
(2005) [hep-th/0301066]

52. A. Kempf, G. Mangano, R.B. Mann, Phys. Rev. D 52, 1108
(1995) [hep-th/9412167]

53. L.N. Chang, D. Minic, N. Okamura, T. Takeuchi, Phys.
Rev. D 65, 125027 (2002) [hep-th/0201017]
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